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Efficient mixed-force first-principles molecular dynamics

Eduardo Anglada,1 Javier Junquera,1,2 and Jose´ M. Soler1
1Departamento de Fı´sica de la Materia Condensada, C-III, Universidad Auto´noma de Madrid, E-28049 Madrid, Spain

2Department of Physics and Astronomy, Serin Physics Laboratory, Rutgers University, Piscataway, New Jersy 08854-8019,
~Received 30 May 2003; published 18 November 2003!

We present an efficient method to mix well convergedab initio forces with simpler and faster ones in
molecular dynamics. While the cheap forces are evaluated every time step, the converged ones correct the
trajectory only everyn time steps. For convenience, both types of forces are calculated with the same basic
scheme, using density functional theory, norm-conserving pseudopotentials, and a basis set of numerical
atomic orbitals. The cheap forces are evaluated with a short-range minimal basis set and the non-self-consistent
Harris functional. Since these evaluations are hundreds of times faster than those of the converged forces, they
add a negligible cost, and the boost in computational efficiency is approximately a factorn. Our results indicate
that one can use values ofn of up to 10, without affecting significantly the calculated structural and dynamical
magnitudes.

DOI: 10.1103/PhysRevE.68.055701 PACS number~s!: 02.70.Ns, 71.15.Pd, 31.15.Qg, 33.15.Vb
-

al
ir
ec
r

o

in
n
o

it
f t
.

fo
e
at
ne
e
od
f
e

u
n
fa
s
w

ab
se
lf-
ut
on
m

m

t
-
of
,
a-

ip-
een
on
the

ap-

by
e
ed

the
ps
Molecular dynamics~MD! is a fundamental tool in atom
istic materials simulation@1#. A majority of practitioners
have used classical, semiempirical interatomic potenti
This is necessary for the large sizes and long times requ
to simulate many processes of enormous scientific and t
nological interest, from materials deformation and fractu
@2# to protein folding@3#. A large effort has been devoted t
develop interatomic potentials for many types of systems@4#.
However, the quantitative reliability of such potentials
situations of bond formation and breaking is highly questio
able. In such cases, it is imperative to use the much m
expensiveab initio MD methods@5,6#, generally limited to a
few hundred atoms and a few tens of picoseconds. Thus,
essential to find methods that accelerate the integration o
dynamical equations, thus allowing for longer simulations

In classical dynamics, one of such methods@7# uses mul-
tiple time scales to integrate the equations of motion
systems with both fast and slow dynamical degrees of fr
dom. The same method can be used to compute separ
the hard, short-ranged forces from the soft, long-ranged o
De Vita and Car@8# have proposed to adapt ‘‘on the fly’’ th
parameters of a classical potential using sporadic or peri
evaluations ofab initio forces. In this work, drawing ideas o
those previous works, we propose a simple method to sp
up dramaticallyab initio MD. In principle, it could be imple-
mented by combining classical andab initio forces. How-
ever, such an approach would still require to develop a s
able classical force field for every new system with differe
interactions. Therefore, instead we take advantage of the
that, while standard density functional forces require the
multaneous convergence of many parameters, much lo
values of those parameters can still yield quite reason
forces. Thus, by reducing drastically the size of the basis
the Brillouin zone sampling, or the number of se
consistency iterations, it is possible to reduce the comp
time by enormous factors and still obtain forces that are c
siderably more reliable than those of classical interato
potentials.

To test our scheme, we have chosen theSIESTA method
@9,10#, which is specially well suited to span the range fro
1063-651X/2003/68~5!/055701~4!/$20.00 68 0557
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‘‘quick and dirty’’ calculations to fully converged ones. I
uses density functional theory@11#, norm-conserving pseudo
potentials@12# and a basis set of numerical atomic orbitals
strictly finite range@13,14#. To calculate converged forces
we might typically use the generalized gradient approxim
tion to exchange and correlation~with spin polarization if
required!, double-z polarized ~DZP! basis orbitals with a
relatively long range, fine integration grids in real and rec
rocal space, and a well converged self-consistency betw
density and potential. For the cheap forces we may save
many different parameters, depending on the system and
properties studied. Thus, we may use the local density
proximation~LDA !, a minimal single-z basis set with short
range, a coarser integration grid in real space, just theG

FIG. 1. Schematic~a! position, ~b! velocity, and~c! force, in
arbitrary units, for a particle moving in one dimension, generated
the mixed-force algorithm with zero initial velocity and a forc
correction interval of ten time steps. For simplicity, the converg
force is equal to zero and the cheap~fast! force is a negative con-
stant. The periodic force correction kicks are positive and invert
velocity. Notice that the position and velocity at the correction ste
are equal to their correct converged value~zero!.
©2003 The American Physical Society01-1
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point in reciprocal space, and the non-self-consistent Ha
functional @15#. Altogether the cheap forces are typical
hundreds of times faster to compute than the converged o
and therefore they add a negligible cost to the overall ca
lation, thus making it unnecessary to resort to classical fo
fields.

As usual, we use the Born-Oppenheimer approximat
and we treat the nuclei as classical particles, subject to
Hellmann-Feynman forces~including all Pulay corrections!.
The equations of motion are solved with the stand
velocity-Verlet algorithm@1#, which ensures the time revers
ibility of the trajectories@7#. The atomic forces at timet are
defined asFf ast(t)1DF(t), where
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FIG. 2. Decomposition of the total converged forcesFconv into a
cheaply evaluated componentFf ast , and a remainderFconv
2Ff ast . Represented are the average norms as a function of t
The trajectory was generated for 64 Si atoms at 2000 K, using
converged forces.
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FIG. 3. Divergence of the mixed-force MD trajectories from t
converged-force trajectory for the liquid silicon system.Dx is the
average distance in atomic positions between the given and
reference trajectories. Force corrections were made evern
52, 5, 10, and̀ ~only fast forces! time steps.
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DF~ t !5H n@Fconv~ t !2Ff ast~ t !# if ~ t/Dt modn!50

0 otherwise.
~1!

Thus, the expensive converged forcesFconv need to be
evaluated only once everyn time stepsDt. In those ‘‘correc-
tion steps,’’ the trajectories generated by the cheap~fast!
forcesFf ast are corrected by applying a force ‘‘kick’’ equal t
the difference between the converged and fast forces at
time, multiplied byn. The factorn accounts for the concen
tration of the continuous force correctionFconv(t)2Ff ast(t)
in one out of everyn steps. The method of Ref.@16#, based
on the position-Verlet algorithm, was reported to have a b
ter numerical stability in response to the correction kic
The efficiency of that method in the present context will
studied in future works.

Figure 1 shows schematically the positions, velociti
and forces of a particle moving in one dimension, genera
with our mixed-force algorithm. For simplicity, we take th
converged force and the initial velocity equal to zero, so t
the correct converged position is also zero at all times. T
mixed-force trajectory, for a constant negative fast for
shows periodic force kicks that change discontinuously
velocity and invert the trajectory at the correction steps.

We have applied this method to simulate a system of
silicon atoms at an average temperature of;2000 K and an
average pressure close to zero. This high temperature
intentionally chosen to test the method under specially st
gent conditions, with high kinetic energies and frequent f
mation and breaking of bonds. The simulations were p
formed with the SIESTA program @10# but standard
Hamiltonian diagonalizations were used instead of ordeN
methods@17,18#, because of the metallic character of liqu
silicon. For the cheap forces we use the Harris functiona
minimal basis set with a range of 3.5 and 4.0 bohr fors and
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FIG. 4. Total energy per atom as a function of time for the liqu
silicon system. In the mixed-force (n510) and converged-force
(n51) trajectories, the total energy was calculated at the correc
steps, as the sum of the Kohn-Sham energy plus the nuclear re
sion and kinetic energies. In the fast-force trajectory (n5`), it was
calculated at every step, using the Harris-functional for the e
tronic part. The standard deviations are 0.9, 1.3, and 0.3 meV/a
for the n51, 10, and̀ trajectories, respectively.
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p orbitals, a real-space integration grid with a plane wa
cutoff of 40 Ry, and only theG k point. For the converged
forces, we use the self-consistent Kohn-Sham functiona
the LDA, a DZP basis set with a range of 5.4, 6.5, and 3.8
s, p, and d basis orbitals, a real-space grid with a 80-R
plane wave cutoff, and only theG k point. The forces are
corrected according to Eq.~1! every n time steps, withDt
51 fs.

Figure 2 compares the magnitudes of the fast and c
verged forces, and of their difference. It can be seen that
latter is a relatively small and smooth correction, which e
plains why it may be evaluated and applied less frequen

Figure 3 represents the divergence of the trajectories, g
erated with different values ofn, away from the reference
converged trajectory@which corresponds ton51 in Eq.~1!#.
It can be seen that even then510 trajectory diverges much
more slowly than that obtained purely from the fast forc
~labeledn5`, i.e., with no force corrections!.

Figure 4 shows the total energy as a function of time. T
energy conservation is considerably worse in the s
consistent converged-force trajectory (n51) than in the
Harris-force trajectory (n5`). This probably reflects large
effects of charge sloshings and analytic discontinuities in
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FIG. 5. Radial pair distribution functions of liquid SiO2 at 5500
K, using the new method with different values ofn. The converged
forces, used forn51 and for the correction steps ofn55 and 10,
were obtained with a doublez plus polarization basis set, a rea
space grid with a plane wave cutoff of 200 Ry, and only theG k
point. The fast forces~that yield then5` curves when uncor-
rected! were calculated with a minimal basis set~singlez), a real-
space grid with a plane wave cutoff of 150 Ry, and only theG k
point.
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forces due to frequent level crossings in this highly dis
dered system. However, it is important to notice that
energy conservation in the mixed-force trajectory (n510) is
similar to that in the converged trajectory.

Despite the high simulation temperature, the charge tra
fer in elemental liquid silicon may be expected to be cons
erably smaller than in an ionic system, making the non-s
consistent Harris functional specially adequate. In fact,
have seen that structural magnitudes such as the bond le
and bond-angle distributions are not very different using
Kohn-Sham and Harris functionals. Therefore, we have a
studied a more challenging system, liquid silica, using
atoms at a high average temperature of 5500 K and a
density of 0.42 g/cm3, typical of porous silica aerogels@19#.
The distributions of bond lengths and angles, presente
Figs. 5 and 6, are indeed very different using the two fu
tionals (n51 and n5`). Despite this, the mixed-force
method, with up ton510, yields the same distributions
within the statistical noise, as the converged Kohn-Sham
jectory. Similar results, to be presented elsewhere, were
tained for an even more ionic system, liquid magnesium
ide, with 54 atoms at 6500 K and 30 GPa.

It might be expected that dynamical magnitudes are m
sensitive than thermodynamic averages to changes in
the MD trajectories are obtained. Figure 7 shows the velo
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FIG. 6. Bond-angle distribution functions of the liquid SiO2

system, using the new method with different values ofn. The bond
cutoff radii were chosen 10% larger than the first maximum in
corresponding pair distribution functions of Fig. 5.
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autocorrelation function for the three systems studied, a
function of the intervaln between force corrections. As ex
pected, the trajectory of the non-self-consistent Harris fu
tional is reasonably accurate only for elemental liquid s
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FIG. 7. Velocity autocorrelation functionZ(t)5^vi(t8)vi(t8
1t)&/^vi

2(t8)& as a function of the intervaln between force correc
tions, for ~a! liquid Si at 2000 K and zero pressure,~b! liquid MgO
at 6500 K and 30 GPa, and~c! liquid SiO2 at 5500 K and a density
of 0.42 g/cm3.
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con. But, in every case, the mixed-force method, with up
n510, yields essentially the same velocity autocorrelatio
as the converged Kohn-Sham trajectories. We have also
culated self-diffusion coefficients from the average quadra
distances traversed as a function of time. Thus, for liq
silicon we obtain, respectively (2.460.1), (2.560.1), (2.6
60.1), (2.660.1), and (2.060.1)31024 cm2/s for n
51, 5, 10, 20, and̀ . Again, the mixed-force value, eve
with n520, is the same, within the statistical error, as that
the converged trajectory. This indicates that dynamical a
kinetic magnitudes, as well as structural or thermodynam
averages, are well reproduced even with quite large value
the boost factorn.

In conclusion, we have presented a method to greatly
celerateab initio molecular dynamics simulations by com
bining cheap force evaluations with accurate converged o
Our results show that the method is very robust with resp
to the reduced accuracy of the cheap forces. Although
acceleration factor will undoubtedly depend on the syst
simulated, our present results indicate that factors of 10
be expected in most cases.

We especially thank Gabriel Fabricius for discussions,
help with the liquid silicon parametrization, and for sharin
with us his data-processing programs. We also acknowle
useful discussions with Emilio Artacho. This work was su
ported by the Fundacio´n Ramón Areces and by Spain’s
MCyT through Grant No. BFM2000-1312.
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