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We present an efficient method to mix well convergsd initio forces with simpler and faster ones in
molecular dynamics. While the cheap forces are evaluated every time step, the converged ones correct the
trajectory only everyn time steps. For convenience, both types of forces are calculated with the same basic
scheme, using density functional theory, norm-conserving pseudopotentials, and a basis set of numerical
atomic orbitals. The cheap forces are evaluated with a short-range minimal basis set and the non-self-consistent
Harris functional. Since these evaluations are hundreds of times faster than those of the converged forces, they
add a negligible cost, and the boost in computational efficiency is approximately ariator results indicate
that one can use values bf up to 10, without affecting significantly the calculated structural and dynamical

magnitudes.
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Molecular dynamic§MD) is a fundamental tool in atom- “quick and dirty” calculations to fully converged ones. It
istic materials simulatiof1]. A majority of practitioners uses density functional theof$1], norm-conserving pseudo-
have used classical, semiempirical interatomic potentialspotentialg 12] and a basis set of numerical atomic orbitals of
This is necessary for the large sizes and long times requiregfrictly finite range[13,14). To calculate converged forces,
to simulate many processes of enormous scientific and tech€ might typically use the generalized gradient approxima-
nological interest, from materials deformation and fracturetion to exchange and correlatidwith spin polarization if
[2] to protein folding[3]. A large effort has been devoted to required, double{ polarized (DZP) basis orbitals with a
develop interatomic potentials for many types of syste#is relatively long range, fine integration grids in real and recip-
However, the quantitative reliability of such potentials in rocal space, and a well converged self-consistency between
situations of bond formation and breaking is highly question-density and potential. For the cheap forces we may save on
able. In such cases, it is imperative to use the much mor81any different parameters, depending on the system and the
expensiveab initio MD methods[5,6], generally limited to a  Properties studied. Thus, we may use the local density ap-
few hundred atoms and a few tens of picoseconds. Thus, it iBroximation(LDA), a minimal singleZ basis set with short
essential to find methods that accelerate the integration of tH@nge, a coarser integration grid in real space, justlthe

dynamical equations, thus allowing for longer simulations.
In classical dynamics, one of such methd¢dsuses mul-
tiple time scales to integrate the equations of motion for
systems with both fast and slow dynamical degrees of free-
dom. The same method can be used to compute separate
the hard, short-ranged forces from the soft, long-ranged ones
De Vita and Caf8] have proposed to adapt “on the fly” the
parameters of a classical potential using sporadic or periodit
evaluations ofb initio forces. In this work, drawing ideas of
those previous works, we propose a simple method to spee
up dramaticallyab initio MD. In principle, it could be imple-
mented by combining classical arab initio forces. How-
ever, such an approach would still require to develop a suit-
able classical force field for every new system with different
interactions. Therefore, instead we take advantage of the fac
that, while standard density functional forces require the si-
multaneous convergence of many parameters, much lowe
values of those parameters can still yield quite reasonable
forces. Thus, by reducing drastically the size of the basis set
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» FIG. 1. Schematida) position, (b) velocity, and(c) force, in

the Brillouin zone sampling, or the number of self- 4pitrary units, for a particle moving in one dimension, generated by
consistency iterations, it is possible to reduce the computehe mixed-force algorithm with zero initial velocity and a force
time by enormous factors and still obtain forces that are concorrection interval of ten time steps. For simplicity, the converged

siderably more reliable than those of classical interatomigorce is equal to zero and the chedas force is a negative con-
potentials. stant. The periodic force correction kicks are positive and invert the

To test our scheme, we have chosen #esTA method  velocity. Notice that the position and velocity at the correction steps
[9,10], which is specially well suited to span the range fromare equal to their correct converged valzero.
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FIG. 4. Total energy per atom as a function of time for the liquid
silicon system. In the mixed-forcen&10) and converged-force
cheaply evaluated componerft and a remainderF (n=1) trajectories, the total energy was calculated at the correction

fasts - cow - steps, as the sum of the Kohn-Sham energy plus the nuclear repul-
_ FfaSt'. Represented are the average norms as a function (.)f tlm%‘ion and kinetic energies. In the fast-force trajectory: (o), it was
The trajectory was generated for 64 Si atoms at 2000 K, using thgalculated at every step, using the Harris-functional for the elec-
converged forces. tronic part. The standard deviations are 0.9, 1.3, and 0.3 meV/atom

o ) ) for then=1, 10, and= trajectories, respectively.
point in reciprocal space, and the non-self-consistent Harris

FIG. 2. Decomposition of the total converged forégg,, into a

functional [15]. Altogether the cheap forces are typically = —E it (t/A _
hundreds of times faster to compute than the converged ones, AF(t)= N Feon () = Fras( )] 1F (U t-modn) 0
and therefore they add a negligible cost to the overall calcu- 0 otherwise.

lation, thus making it unnecessary to resort to classical force (D)
fields.

As usual, we use the Born-Oppenheimer approximation NUS: the expensive converged forcBs,n, neeg to be
and we treat the nuclei as classical particles, subject to thgvaluated ?nly once everytime stepsit. In those “correc-
Hellmann-Feynman forcencluding all Pulay correctiops ~ UON Steps,” the trajectories generated by the chéag)

The equations of motion are solved with the standardOrceSFrasiare corrected by applying a force “kick” equal to
velocity-Verlet algorithn{1], which ensures the time revers- the dlffere_nc_e between the converged and fast forces at that
ibility of the trajectorieq 7]. The atomic forces at timeare  time, multiplied byn. The factorn accounts for the concen-

defined asF;,¢(t) + AF(t), where tration of the continuous force correcti®fy,, (t) — Frasdt)
as in one out of evenyn steps. The method of Rdf16], based

on the position-Verlet algorithm, was reported to have a bet-
1.0 ‘ ‘ ‘ ‘ ter numerical stability in response to the correction kicks.
The efficiency of that method in the present context will be
studied in future works.
0.75-|———" n=10 i Figure 1 shows schematically the positions, velocities,
_____ n=5 and forces of a particle moving in one dimension, generated
i - 1 with our mixed-force algquﬁhm. For .Slmp|ICIty, we take the
n= converged force and the initial velocity equal to zero, so that
the correct converged position is also zero at all times. The
mixed-force trajectory, for a constant negative fast force,
shows periodic force kicks that change discontinuously the
velocity and invert the trajectory at the correction steps.
e We have applied this method to simulate a system of 64
P 1 silicon atoms at an average temperature-&000 K and an
0.0 —emm T T T i T e e average pressure close to zero. This high temperature was
100 200 300 400 intentionally chosen to test the method under specially strin-
t (fs) gent conditions, with high kinetic energies and frequent for-
mation and breaking of bonds. The simulations were per-
FIG. 3. Divergence of the mixed-force MD trajectories from the formed with the SIESTA program [10] but standard
converged-force trajectory for the liquid silicon systetx is the ~ Hamiltonian diagonalizations were used instead of ohder-
average distance in atomic positions between the given and th@ethods17,18), because of the metallic character of liquid
reference trajectories. Force corrections were made every Silicon. For the cheap forces we use the Harris functional, a
=2, 5, 10, and» (only fast forceptime steps. minimal basis set with a range of 3.5 and 4.0 bohrdand
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FIG. 5. Radial pair distribution functions of liquid Sj@t 5500
K, using the new method with different valuesrofThe converged @(deg)
forces, used fon=1 and for the correction steps of=5 and 10,
were obtained with a doublé plus polarization basis set, a real- FIG. 6. Bond-angle distribution functions of the liquid SiO

space grid with a plane wave cutoff of 200 Ry, and only th&  system, using the new method with different values.gfhe bond
point. The fast forcedthat yield then= curves when uncor-  cutoff radii were chosen 10% larger than the first maximum in the

rected were calculated with a minimal basis gsingle¢), a real- corresponding pair distribution functions of Fig. 5.
space grid with a plane wave cutoff of 150 Ry, and only kthé
point. forces due to frequent level crossings in this highly disor-

dered system. However, it is important to notice that the

p orbitals, a real-space integration grid with a plane wavesnergy conservation in the mixed-force trajectomy=(10) is
cutoff of 40 Ry, and only thd" k point. For the converged similar to that in the converged trajectory.
forces, we use the self-consistent Kohn-Sham functional in Despite the high simulation temperature, the charge trans-
the LDA, a DZP basis set with a range of 5.4, 6.5, and 3.8 fofer in elemental liquid silicon may be expected to be consid-
s, p, andd basis orbitals, a real-space grid with a 80-Ry erably smaller than in an ionic system, making the non-self-
plane wave cutoff, and only thE k point. The forces are consistent Harris functional specially adequate. In fact, we
corrected according to Eq1) everyn time steps, withAt  have seen that structural magnitudes such as the bond length
=1 fs. and bond-angle distributions are not very different using the

Figure 2 compares the magnitudes of the fast and corkohn-Sham and Harris functionals. Therefore, we have also
verged forces, and of their difference. It can be seen that thetudied a more challenging system, liquid silica, using 72
latter is a relatively small and smooth correction, which ex-atoms at a high average temperature of 5500 K and a low
plains why it may be evaluated and applied less frequentlydensity of 0.42 g/crfy typical of porous silica aerogef49].

Figure 3 represents the divergence of the trajectories, gerrhe distributions of bond lengths and angles, presented in
erated with different values af, away from the reference Figs. 5 and 6, are indeed very different using the two func-
converged trajectorjwhich corresponds to=1 in Eq.(1)].  tionals (=1 and n=«). Despite this, the mixed-force
It can be seen that even the=10 trajectory diverges much method, with up ton=10, yields the same distributions,
more slowly than that obtained purely from the fast forceswithin the statistical noise, as the converged Kohn-Sham tra-
(labeledn=0, i.e., with no force corrections jectory. Similar results, to be presented elsewhere, were ob-

Figure 4 shows the total energy as a function of time. The&ained for an even more ionic system, liquid magnesium ox-
energy conservation is considerably worse in the selfide, with 54 atoms at 6500 K and 30 GPa.
consistent converged-force trajectorm=1) than in the It might be expected that dynamical magnitudes are more
Harris-force trajectoryrf=oc). This probably reflects larger sensitive than thermodynamic averages to changes in how
effects of charge sloshings and analytic discontinuities in thehe MD trajectories are obtained. Figure 7 shows the velocity
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con. But, in every case, the mixed-force method, with up to
n=10, yields essentially the same velocity autocorrelations
as the converged Kohn-Sham trajectories. We have also cal-
culated self-diffusion coefficients from the average quadratic
distances traversed as a function of time. Thus, for liquid
silicon we obtain, respectively (2#40.1), (2.5-0.1), (2.6
+0.1), (2.6:0.1), and (2.60.1)x10 % cn?é/s for n

=1, 5, 10, 20, ande. Again, the mixed-force value, even
with n=20, is the same, within the statistical error, as that of
the converged trajectory. This indicates that dynamical and
kinetic magnitudes, as well as structural or thermodynamic
averages, are well reproduced even with quite large values of
the boost facton.

In conclusion, we have presented a method to greatly ac-
celerateab initio molecular dynamics simulations by com-
bining cheap force evaluations with accurate converged ones.
Our results show that the method is very robust with respect
to the reduced accuracy of the cheap forces. Although the

FIG. 7. Velocity autocorrelation functiorZ(t)={v;(t")v;(t’
+1))/(v(t")) as a function of the interval between force correc-
tions, for(a) liquid Si at 2000 K and zero pressuke) liquid MgO
at 6500 K and 30 GPa, ar(d) liquid SiO, at 5500 K and a density
of 0.42 g/cni.

acceleration factor will undoubtedly depend on the system
simulated, our present results indicate that factors of 10 can
be expected in most cases.
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